
Detecting Critical Nodes for MANET Intrusion Detection Systems

A. Karygiannis, E. Antonakakis, and A. Apostolopoulos
National Institute of Standards and Technology

{karygiannis, manos, aimilios}@nist.gov

Abstract

Ad hoc routing protocols have been designed to

efficiently reroute traffic when confronted with network
congestion, faulty nodes, and dynamically changing
topologies. The common design goal of reactive,
proactive, and hybrid ad hoc routing protocols is to
faithfully route packets from a source node to a
destination node while maintaining a satisfactory level
of service in a resource-constrained environment.
Detecting malicious nodes in an open ad hoc network
in which participating nodes have no previous security
associations presents a number of challenges not faced
by traditional wired networks. Traffic monitoring in
wired networks is usually performed at switches,
routers and gateways, but an ad hoc network does not
have these types of network elements where the
Intrusion Detection System (IDS) can collect and
analyze audit data for the entire network. A number of
neighbor-monitoring, trust-building, and cluster-based
voting schemes have been proposed in the research to
enable the detection and reporting of malicious activity
in ad hoc networks. The resources consumed by ad hoc
network member nodes to monitor, detect, report, and
diagnose malicious activity, however, may be greater
than simply rerouting packets through a different
available path. This paper presents a method for
determining conditions under which critical nodes
should be monitored, describes the details of a critical
node test implementation, presents experimental
results, and offers a new approach for conserving the
limited resources of an ad hoc network IDS.

Keywords: mobile ad hoc network, MANET,
intrusion detection, IDS, security, edge-cut, vertex-cut.

1. Introduction

Mobile ad hoc networks (MANETs) present a
number of unique problems for Intrusion Detection
Systems (IDS). Network traffic can be monitored on a
wired network segment, but ad hoc nodes can only
monitor network traffic within their observable radio

transmission range. A wired network under a single
administrative domain allows for discovery, repair,
response, and forensics of suspicious nodes. A
MANET is most likely not under a single
administrative domain, making it difficult to perform
any kind of centralized management or control. In an
ad hoc network, malicious nodes may enter and leave
the immediate radio transmission range at random
intervals, may collude with other malicious nodes to
disrupt network activity and avoid detection, or behave
maliciously only intermittently, further complicating
their detection. A node that sends out false routing
information could be a compromised node, or merely a
node that has a temporarily stale routing table due to
volatile physical conditions. Packets may be dropped
due to network congestion or because a malicious node
is not faithfully executing a routing algorithm [1].

Researchers have proposed a number of
collaborative IDS systems to address these challenges.
In general, collaborative IDSs will perform best in a
densely populated MANET with limited mobility, and
will perform worse in a sparsely populated MANET
with significant mobility. The effectiveness of a
collaborative IDS also depends on the amount and
trustworthiness of data that can be collected by each
node. The longer the nodes are members of the
MANET, the greater the availability of meaningful
data for further analysis. In a MANET with a high
degree of mobility, if the number of routing error
messages caused by legitimate reasons far exceeds the
number of routing error messages caused due to the
presence of malicious nodes, the effectiveness or
benefit of an IDS may be severely limited. The damage
that could be caused by a malicious node in highly
mobile environment would, however, also be minimal.
Mobility introduces additional difficulty in setting up a
system of cooperating nodes in an IDS.

Ad hoc networks comprised of stationary sensors
and mobile collector nodes may be less ephemeral and
less mobile, while ad hoc networks comprised of
personal handheld devices may be characterized by
sporadic participation of individual members. A node’s
movements cannot be restricted in order to let the IDS

cooperate or collect data and a node cannot be
expected to monitor the same physical area for an
extended period of time. A single node may be unable
to obtain a large enough sample size of data to
accurately diagnose other nodes.

MANETs with loose or no prior security
associations are more difficult to diagnose than a
MANETs comprised of nodes from the same
organization with strong security associations and
access to higher-level security services. Establishing
trust in an open network in which higher-level security
services are unavailable can be hampered by the short-
lived presence of both collaborating and malicious
nodes. In addition to having no previously established
trust associations, nodes in an open ad hoc network
have little incentive for reciprocity to faithfully execute
a routing protocol or provide a minimum level of
service. Closed ad hoc networks that support critical
applications may not be able to tolerate the presence of
malicious nodes; fortunately closed networks can more
easily establish prior trust associations for a
collaborative IDS. A closed ad hoc network is at a
greater risk by allowing the extended presence of
malicious nodes, but more likely to have preinstalled
security mechanisms to detect these malicious nodes.
Malicious nodes in sparsely populated networks can be
more harmful than malicious nodes in a densely
populated network since these nodes can effectively
not only disrupt communication but also disconnect the
network.

The level of effort required of resource constrained
devices to monitor, detect, and diagnose malicious
activity in a dynamic ad hoc network may be too costly
when compared to the cost of simply rerouting packets
through an alternative path. For example, in a densely
populated network where several alternative paths are
typically available, selecting an alternative route may
be a more judicious use of limited resources.
Alternatively, in some situations as we describe in this
paper, the ad hoc network should expend additional
resources to monitor critical nodes. In this paper we
provide the motivation and implementation details for
detecting critical nodes in an ad hoc network.

The paper is organized as follows: Section 1
provides an introduction to ad hoc IDS and the
problem this paper addresses, Section 2 provides a
brief overview of previous research, Section 3
describes our approach to detecting critical nodes,
Section 4 provides implementation details and
illustrative examples, Section 5 summarizes our
experimental results, Section 6 outlines future research
topics, Section 7 concludes the paper, and Section 8
includes relevant references.

2. Related Work

A number of IDS techniques have been proposed in
the research literature. Moreover, a number of trust-
building and cluster-based voting schemes have been
proposed to enable the sharing and vetting of
messages, and data, generated and gathered by IDS
systems. Zhang and Lee describe a distributed and
collaborative anomaly detection-based IDS for ad hoc
networks [2, 3]. Tseng et al. describe an approach that
involves the use of finite state machines for specifying
correct AODV routing behavior and distributed
network monitors for detecting run-time violation of
the specifications [4]. Pirzada and McDonald present a
method for building confidence measures of route
trustworthiness without a central trust authority. The
authors also present a concise summary of previous
work in the area of establishing trust in ad hoc
networks [5]. Theodorakopoulos and Baras present a
method for establishing trust metrics and evaluating
trust [6]. Michiardi and Molva assign a value to the
“reputation” of a node and use this information to
identify misbehaving nodes and cooperate only with
nodes with trusted reputations [7]. Albers and Camp
couple a trust-based mechanism with a mobile agent
based intrusion detection system, but do not discuss the
security implications or overhead needed to secure the
network and individual nodes from the mobile agents
themselves [8]. Sun, Wu and Pooch introduce a
geographic zone-based intrusion detection framework
that uses location-aware zone gateway nodes to collect
and aggregate alerts from intrazone nodes. Gateway
nodes in neighboring zones can then further collaborate
to perform intrusion detection tasks in a wider area and
to attempt to reduce false positive alarms [9].

3. Detecting Critical Nodes

The approach described in this paper is built around
the notion of a critical node in an ad hoc network. Our
definition of a critical node is a node whose failure or
malicious behavior disconnects or significantly
degrades the performance of the network. Once
identified, a critical node can be the focus of more
resource intensive monitoring or other diagnostic
measures. If a node is not considered critical, this
metric can be used to help decide if the application or
the risk environment warrant the expenditure of the
additional resources required to monitor, diagnose, and
alert other nodes about the problem. In order to detect a
critical node we look towards a graph theoretic
approach to detect a vertex-cut and an edge-cut. A
vertex-cut is a set of vertices whose removal produces
a subgraph with more components than the original

graph. A cut-vertex, or articulation point, is a vertex-
cut consisting of a single vertex. An edge-cut is a set of
edges whose removal produces a subgraph with more
components than the original graph. A cut-edge, or
bridge, is an edge-cut consisting of a single edge.
Although the cut-vertex or cut-edge of a graph G can
be determined by applying a straight forward algorithm
[14], finding a cut-vertex in the graphical
representation of an ad hoc network is not as straight-
forward, since the nodes cannot be assumed to be
stationary. A network discovery algorithm can give an
approximation of the network topology, but the value
of such an approximation in performing any kind of
network diagnosis or intrusion detection depends on
the degree of mobility of the nodes.

Determining the global network topology in a
mobile ad hoc network given the time delays of the
diagnostic packets and the mobility of the nodes makes
this task futile, but determining an approximation of
this topology, or subset of this topology, within a
certain time frame may be useful. An approximation of
the network topology can still provide useful
information about network density, network mobility,
critical paths, and critical nodes. Even with the
uncertainty associated with correctly reconstructing the
network topology for a given time period, this
additional information can help reduce the resources
consumed to monitor all nodes in the absence of this
information.

The critical node test detects nodes whose failure or
malicious behavior disconnects or significantly
degrades the performance of the network (i.e.
introduces unacceptably long alternative paths). In an
effort to further reduce the number of tests performed,
a lightweight trigger mechanism monitors network
traffic and initiates a critical node test when it suspects
such a condition might exist. The trigger mechanism is
designed to allow false positives that the critical node
test will later screen out. The only false-negatives that
can occur are when there is no traffic to analyze on a
cut-edge, but this condition is most likely short-lived
and of no consequence. The trigger mechanism
monitors the number of connections served by the test
node as well as the number of packets traversing the
test node. Note that the trigger itself can also serve as a
lightweight alternative to the critical node test. The
node performing the test is referred to as the testing
node, and the node being tested is referred to as the
node under test.

The critical node test implementation makes
extensive use of the ip, route, and ping utilities. The ip
utility is a TCP/IP interface configuration and routing
utility that configures the network interfaces. The route
utility manipulates the kernel's IP routing tables. Its
primary purpose is to set up static routes to specific

hosts or networks via an interface after it has been
configured with the ifconfig program. When used
together, ip route provides the necessary tools for
manipulating any of the routing tables – such as
displaying routes, routing cache, adding routes,
deleting routes, altering existing routes, getting route
information, and clearing routing tables.

Three steps are required to detect whether a testing
node shares a critical link with its neighbor. The first
step is to temporarily modify the testing node’s routing
table to allow only one communication link to be
operational at a time, while blocking communication
through all others. The enabled communication link
will be between the testing node and a node other than
the node under test. Each communication link will be
tested sequentially in this manner to determine if an
alternative path to the link under test exists. If an
alternative path exists, then the link is not critical
because its removal will not disconnect the network. In
order to temporarily change the routing tables, we
route all the outgoing network traffic through the link
shared with a neighbor node other than the node under
test, and execute the following commands:

#ip route change <network_area>/24 via <neighbor_node>

The second step is for the host to attempt to

discover an alternative path by using ping to the node
under test without using the suspected cut-edge
between the testing node and the node under test. To
discover an alternative path to the node under test, the
testing node executes the following command:

#ping –c 5 –s 10 <node_under_test> -A -R

Where –c is the number of pings that the host

executes, -s is the number of data bytes to be sent, -A
is the audit flag, and the –R flag returns the route, if
exists, to the <node_under_test> node. Once the results
of the ping are returned, the network routing table is
restored during the third and final step to its initial
configuration as follows:

#ip route del <network_area >/24 via <neighbor_node> dev wlan0
#ip route add <network_area>/24 dev wlan0

Once a critical link is detected, the host node may

choose expend additional resources to initiate an IDS
module that is more resource intensive, such as a
traffic monitoring watchdog module or collaborative
IDS [10, 11, 12]. If there is no critical link then the
host can use the lighter weight modules to continue to
monitor network traffic. More experimental data is
needed to find the right balance between more and less
resource intensive IDS techniques. The difficulty in

characterizing typical behavior in an ad hoc network is
further complicated by the lack of publicly available
MANET traffic traces.

Altering the routing tables to perform the critical
node test should not disrupt normal traffic, perturb any
exiting IDS, or alert neighboring nodes that they are
being tested. The current implementation uses ip rules
that cause some level of traffic disruption during the
critical node test. Currently, all the packets traversing
the testing node through the shared communication
link with the node under test and the communication
link being used as an alternate path experiences some
packet loss as shown in Figure 5. AODV RREQ and
RREP packets will be affected since they are
encapsulated in UDP packets, but there are no RERR
messages created by the host node during the critical
test and the AODV HELLO messages are completely
unaffected. This is very important, because after the
end of the critical test all the previously established
routes are restored, and the routing table is restored to
its original state. The duration of the critical node test
depends on the network density and topology. Critical
node conditions, however, are likely to occur when a
node has a relatively small degree and therefore fewer
tests are required. We are currently investigating ways
to eliminate this traffic disruption completely for
topologies in which there is no critical node.

The purpose of the trigger mechanism is to
minimize the invocation of the critical node test. The
trigger mechanism is a light weight monitor that calls
the critical node test only when it suspects the
neighboring nodes might be critical. The trigger
mechanism runs on a testing node and records the
Ethernet and IP headers of each incoming and outgoing
packet that is routed through the testing node. The
testing node does not store any packets it sends or
receives; instead it tabulates statistics on the Ethernet
and IP packet headers. The testing node tabulates
information such as the ID of each neighboring node,
its IP address, MAC address, and the time that the
packet was forwarded. In addition, the testing node
counts the number peer-to-peer pair connections that
traverse the testing node. The term connection refers to
a pair of nodes that have a peer-to-peer TCP, UDP, or
ICMP connection. This connection is not the same as a
TCP session. These peer-to-peer connections are
associated with the neighbor's MAC Ethernet source
address, if the packet is incoming, or with the
neighbor's MAC Ethernet destination address, if the
packet is outgoing. The trigger mechanism can
distinguish between the two cases because if the testing
node’s MAC address is in the Ethernet destination
field, that means the destination is the testing node,
therefore it is an incoming packet. If the testing node’s
MAC address is located in the Ethernet destination

field this means that the host is either generating this
packet or the host is forwarding this packet. The trigger
mechanism creates two tables: incoming packets and
outgoing packets. From these tables the trigger
mechanism tries to determine if several nodes rely on a
communication link incident to the testing node or if
the incident communication link is responsible for a
significant amount of traffic. If either of these of these
conditions occurs, the trigger mechanism can invoke
the critical node test. The trigger mechanism is
configurable and requires no changes to the routing
table. The approach presented in this paper allows the
node to make an informed decision on how it will
expend its resources. Neither the trigger mechanism
nor the critical node tests need to be executed by all the
nodes in the network. Moreover, they do not require
the collaboration of other nodes in the network beyond
the faithful execution of the TCP/IP protocols. The
following section will provide detailed examples of
how the trigger mechanism and the critical node test
work.

4. Implementation Details and Examples

The implementation described in this paper was
tested using the mLab testbed that allows users to
create arbitrary network topologies. By changing the
logical topology of the network, mLab users can
conduct tests in an ad hoc network without having to
physically move the nodes. mLab controls the test
scenarios through a wired interface, while the ad hoc
nodes communicate through a wireless interface [15].

“Figure 1. A sample topology generated by mLab

used to demonstrate the trigger mechanism and the
critical node test.”

The topology shown in Figure 1 is used to show

how the trigger mechanism collects information and
determines if a node and its incident communication
links warrant the invocation of the critical node test.

In order to illustrate the detection of critical nodes,
we first generate some test traffic in the network. TCP
socket servers are initiated at nodes 33 and 22 to
generate TCP traffic. Two TCP socket clients are

initiated at nodes 36 and 28. These clients send simple
socket messages every 2 to 3 seconds to the servers.
Node 37 initiates a ping of node 33 and similarly node
35 initiates a ping of node 24 in order to create ICMP
packet traffic within the network. Finally two Secure
Shell (SSH) sessions are initiated between node 27 and
node 37, and node 36 and node 27. The trigger
mechanism begins by separating the incoming and
outgoing activity into two categories: broadcast and
non-broadcast packets.

“Figure 2. An AODV broadcast packet that was

sent by node 29 and captured by node ‘testing node
21’.”

Figure 2 shows an AODV broadcast packet that has

been sent by node 29 and captured by node testing
node 21. This broadcast packet illustrates how testing
node 21 can associate node 29’s source IP address of
192.168.106.29 with its MAC address 0:c:41:dd:6b:95.
This is enabled by the AODV Hello messages with an
Ethernet destination address ff:ff:ff:ff:ff:ff that are
broadcast every 0.5 or 1 second. Similarly, each node
can build a table mapping its neighbors’ MAC
addresses with their corresponding IP addresses.

Figure 3 shows a sample incoming non-broadcast
packet sent by node 23 and captured by testing node
21. Testing node 21 has a MAC address of
0:c:41:dd:69:4e and IP address 192.168.106.21.
Packets without an Ethernet destination address of
ff:ff:ff:ff:ff:ff are considered to be non-broadcast.
Having already created a table linking each of node

21’s neighbors’ MAC address to their IP address,
testing node 21 knows that MAC address
0:60:b3:6a:5:1a belongs to node 23 (IP address
192.168.106.33). This packet shows that the
communication link between node 21 and node 23
serves the connection between node 36 (IP address
192.168.106.36) and node 33 (IP address
192.168.106.33).

Packets that belong to the same peer-to-peer
connection have the same IP source and IP destination
address pair in the IP header fields of every non-
broadcast packet. The trigger mechanism stores this
information in two separate tables. One table
summarizes all the incoming packets (in this case the
testing node’s MAC is located in the Ethernet
destination field). The other table stores the outgoing
or forwarded packets (in this case the testing node’s
MAC address is located in the Ethernet source field). If
the host’s MAC address is not in the Ethernet
destination field, then the packet is forwarded and the
source-destination pair count is incremented.

“Figure 3. A sample packet sent by node 23 and

received by node 21.”

For example, the first row of table 1 shows packets

recorded by node 21 related to the peer-to-peer
connection between IP source address 192.168.106.36
and IP destination address 192.168.106.33. This
connection relies on the communication link between
node 21 and node 23 serves. Note that 152 packets
have been logged with node 21 as the Ethernet
Destination address and node 23 as Ethernet Source
address. Using the same topology as shown in Figure
1, the following example shows how testing node 21
initiates the trigger mechanism.

“Table 1. Incoming packets captured by node 21 (IP

address 192.168.106.21). [Z=192.168.106]”

Ethernet
Source
(Neighbor’s
IP)

IP -
Remote
source

IP –
Remote
Destination

Number
of
packets
recorded

Z.36 Z.33 152
Z.23 Z.21 31
Z.22 Z.28 157
Z.35 Z.24 104
Z.37 Z.33 102
Z.37 Z.27 18
Z.36 Z.27 21

Z.23

Total number of
packets through node 23 585

Z.33 Z.36 121
Z.26 Z.21 33
Z.33 Z.37 102
Z.26 Z.37 1Z.26

Total number of
packets through node 26 257

Z.29 Z.21 4
Z.28 Z.22 264
Z.24 Z.35 104
Z.27 Z.37 21Z.29

Total number of
packets through node 29 393

Table 2 shows the outgoing packets captured by

node 21 after 70 seconds have elapsed under the traffic
conditions described above. The number of sessions
that the testing node serves can underscore the
importance of its links with each of its neighbors.
Table 2 shows that the link that testing node 21
(192.168.106.21) shares with neighboring node 23
(192.168.106.23) serves 8 different incoming
connections. If this shared link fails, the remote IP
sources that appear in the second column of the table
must discover new routes to the corresponding nodes
in the third column.

The testing node can evaluate the network traffic by
the total number of incoming and outgoing
connections. Table 2 shows the outgoing packets
captured by node 21 (IP address 192.168.106.21). Note
that 8 connections are served between node 21 and
node 23, 3 between node 21 and node 26, and 4
between node 21 and node 29 during the test sample
period. Since the link between node 21 and 23 serves 8
of 15 outgoing connections it can be considered for
additional testing. The trigger mechanism also notes
that the communication link between node 21 and
neighbor node 23 (192.168.106.23) is responsible for
forwarding 585 out of 1235 packets. Depending on the
sample duration and the configurable settings, the
trigger mechanism can request a critical node test to
determine if the communication link between node 21
and 23 is a cut-edge.

“Table 2. Outgoing packets captured by node 21 (IP
address 192.168.106.21). [Z=192.168.106]”

Ethernet
Destination
(Neighbor’
s IP)

IP -
Remote
source

IP – Remote
Destination

Number
of packets
recorded

Z.21 Z.23 36
Z.33 Z.36 121
Z.28 Z.22 264
Z.24 Z.35 104
Z.21 Z.37 1
Z.26 Z.37 1
Z.33 Z.37 101
Z.27 Z.37 1

Z.23

Total number of
packets through node 23 629

Z.36 Z.33 152
Z.21 Z.26 28
Z.37 Z.33 102 Z.26
Total number of

packets through node 26 282
Z.21 Z.29 2
Z.22 Z.28 157
Z.35 Z.24 104
Z.37 Z.27 18

Z.29

Total number of
packets through node 29 281

Table 3 shows a summary of the total incoming and

outgoing connection network traffic for testing node
21. The shared communication link between node 21
and node 23 serves most of the current forwarding
activity. Therefore, either the communication link
between node 21 and node 23 is supporting the
exchange of large files or is a concentration point for
the networks traffic. This link serves 9 different nodes
of the ad hoc network (192.168.106.36,
192.168.106.33, 192.168.106.23, 192.168.106.22,
192.168.106.28, 192.168.106.35, 192.168.106.24,
192.168.106.37 and 192.168.106.27) and 15 total
different connections as shown in Table 3. This
information is enough for the trigger mechanism to
consider the link between testing node 21 and node 23
(192.168.106.23) as a potential critical link and to
initiate the critical node test.

“Table 3. Total incoming and outgoing connections

between nodes 21 and 23, 26, and 29.
[Z=192.168.106]”

IP Address
of Node
21’s
Neighbors

Incoming
and
outgoing
packets per
neighbor

Total
Incoming
and
Outgoing
Connections

Number
of remote
nodes
served

Z.23 1214 15 9
Z.26 539 7 5
Z.29 674 8 7

The critical node test checks whether the testing

node shares a critical link with node 23 by blocking all
the neighbor edges except one and try to ping the
specific node. In this example the only communication
link that the routing table allows is through node 29.

“Figure 4. The results of ‘critical node test’
executed by testing node 21 (HOST) through node 29
to node 23.”

Testing node 21 temporarily changes the outgoing
routing table. The routing table temporarily blocks all
outgoing routing except a single link with one of its
neighbors. In this example all traffic is forwarded
through the shared communication link between 21 and
29. Testing node 21 then attempts a ping to the node 23
through node 29, without relying on shared
communication link between node 21 and node 23. If
the ping successfully finds a new route to the node
under test without using the shared communication
link between node 21 and node 23, then testing node
21 concludes that node 21 and node 23 do not share a
critical link. The routing tables are then restored. If
nodes 21 and 23 shared a critical link, or cut-edge,
more resource intensive monitoring could be requested
or alternative measures suitable to the risk environment
could be taken.

5. Experimental Results

A series of experiments were conducted using the
mLab testbed to examine the effectiveness of the
critical node test, as the mLab test bed allows one to

replay the same topology changes and traffic scenarios,
in order to analyze the effects of each parameter
individually. The goal of these experiments was to
measure the computational and the communication
load of the nodes under various traffic and mobility
conditions. In addition, a comparison was made
between operating a watchdog IDS continuously
versus running the trigger/critical test mechanism to
determine if and when the watchdog IDS should be
activated. Unfortunately, since there is little to no
experience with commercial MANET applications, any
speculation on what constitutes high or low mobility is
based mostly on intuition.

The emulated ad hoc network was comprised of 10

ARM and 2 ix86 architecture nodes. A heuristic
algorithm was used to generate a fully connected graph
every few minutes (depending on the mobility
scenario). The results were collected after running
almost one thousand consecutive topologies, with
topology changes taking place every 5 to 10 minutes,
depending on the mobility scenario. Another parameter
in our experiments was the network traffic, which
consisted of TCP, UDP/AODV and ICMP packets.
The experiments were conducted under low (4 sockets)
and higher (10 sockets) traffic conditions. Using the
Linux tools under /proc, we measured CPU usage
(total and per process), memory footprints, hard disk
utilization and wireless network traffic.

We also measured packet loss for each peer-to-peer
connection, based on ICMP packets. A summary of the
results and our conclusions is presented here and is
displayed in figure 5. Detailed test conditions,
adjacency matrices used to represent the logical
topology, open source code, and test results can be
found on our project web site.

CPU: The watchdog IDS utilized, in most cases, an

average of 60-70% of the CPU, while the
trigger/critical mechanism utilized an average of about
0.3% and under no conditions did it exceed 1%.

Memory: The initial memory footprint of the
watchdog was about 450KB, while the trigger/critical
mechanism occupied about 125KB. Of course, since no
other applications were running, the processes
gradually dominated all of the available memory, in all
cases.

Hard disk: The rate at which data was written to
and read from the hard disk was, on average, about
double in the machines that the watchdog was running,
than in the machines that ran the trigger / critical node
test mechanism.

Wireless network: The experiments indicate that
packet loss is caused mainly because of sudden
topology changes and increased traffic, ranging from

1-2% loss for low mobility and traffic to 10-15% for
high mobility and traffic. When the critical test
mechanism test ran, it caused additional packet loss, as
expected, but the overall packet loss only increased by
an extra 2-4%, depending on the case.

 X mobility, Y+Z traffic

 Watchdog mCritical simple
traffic

Process
CPU 79% 0.27% N/A

Initial
memory
footprint

456 KB 121 KB N/A

Packet
loss 7.80% 3.80% 1.40%

 X' mobility, Y+Z traffic

 Watchdog mCritical simple
traffic

Process
CPU 75% 0.24% N/A

Initial
memory
footprint

443 KB 127 KB N/A

Packet
loss 4.60% 7.40% 4%

 X mobility, Y'+Z traffic

 Watchdog mCritical simple
traffic

Process
CPU 34% 0,29% N/A

Initial
memory
footprint

446 KB 122 KB N/A

Packet
loss 1.40% 5.00% 1%

Figure 5. A brief table of the experimental results.

X stands for 7 topology changes in one hour, X’ for 14
topology changes in one hour, Y for traffic created
from 2 TCP and 2 UDP sockets, Y’ for traffic created
from 5 TCP and 5 UDP sockets and Z for 5 peer-to-
peer ICMP (ping) connections every 3 seconds.

Of course, one should always bear in mind, that
these experiments were conducted in emulation, not in
simulation, which implies that, these figures also
depend on several factors that also cause packet loss,
such as the wireless card temperature during the
experiment, environmental interference, potential
routing algorithm implementation problems, driver
stability issues, etc.

In conclusion, our experiments confirm that the
trigger/critical node test mechanism is a lightweight
solution that can be used in order to determine the
proper conditions to activate a more demanding IDS
[2, 3, 4]. When compared to running a watchdog IDS
on all nodes under all conditions, the proposed

mechanism offers a significant improvement in the
efficient use of limited resources, and packet loss
introduced by the critical node test is negligible
compared to the packet loss resulting from the network
mobility.

6. Conclusions

Members of an open ad hoc network are confronted
with a dependence on other nodes, for which there are
no previous security associations, to faithfully route
packets to and from their source and destination, and to
collaborate in the detection and notification of the
presence of malicious or faulty nodes. Numerous ad
hoc IDS methods for detecting malicious nodes have
been simulated, fewer have been implemented, and
given the scarcity of empirical data and the limited
deployment of ad hoc networks in hostile
environments, there is not much real-world experience
in detecting malicious activity in ad hoc networks. If
the total cost of running an ad hoc IDS exceeds the cost
of rerouting traffic when confronted with network
congestion, faulty nodes, or dynamically changing
topologies, there will be little incentive for nodes to
collaborate in open ad hoc networks. This paper
presents a method for reducing the instances in which
nodes must employ resource-consuming collaborative
IDS techniques in open ad hoc networks in which the
associations are ephemeral and there is no easily
enforceable commitment for reciprocity.

The examples provided in this paper illustrate how

an ad hoc communication link and node can be tested
to determine if the expenditure of additional resources
to monitor the behavior of a neighboring node to detect
malicious activity is warranted. This test is completed
in a relatively short time window (usually a few
seconds), without collaborating with any other nodes in
the network. As a result, the local resources are used
far more efficiently, but, when one considers the total
network resources consumed, the approach provides
more dramatic savings. The same techniques described
in this paper may be used to detect critical links and to
provide guidance for how the location of the nodes in
an ad hoc network might be better physically arranged
in order to provide more fault tolerance and better
quality of service.

7. References

[1] A. Patwardhan, J. Parker, A. Joshi, A. Karygiannis and
M. Iorga. Secure Routing and Intrusion Detection in Ad Hoc
Networks. Third IEEE International Conference on Pervasive
Computing and Communications 2005.

[2] Y. Zhang and W. Lee. Intrusion detection in wireless ad
hoc networks. In Proceedings of the 6th annual international
conference on Mobile computing and networking, pp. 275–
283. ACM Press, 2000.

[3] Y. Zhang, W. Lee, and Y. Huang. Intrusion detection
techniques for mobile wireless networks. ACM/Kluwer
Mobile Networks and Applications (MONET), 2002.

[4] C.-Y. Tseng, P. Balasubramanyam, C. Ko, R.
Limprasittiporn, J. Rowe, and K. Levitt. A specification-
based intrusion detection system for AODV. In Proceedings
of the 1st ACM workshop on Security of ad hoc and sensor
networks, pp. 125–134. ACM Press, 2003.

[5] Pirzada, Asad Amir, and McDonald, Chris. Establishing
trust in pure ad-hoc networks. Proceedings of the 27th
conference on Australasian Computer Science - Volume 26,
pp 47-54, 2004

[6] Theodorakopoulos, George and Baras, John. Trust
evaluation in ad-hoc networks. Proceedings of the 2004
ACM workshop on Wireless security, pp. 1-10, 2004.

[7] Michiardi, P. and Molva, R., “Core: A Collaborative
Reputation mechanism to enforce node cooperation in
Mobile Ad Hoc Networks”, Communication and Multimedia
Security 2002 Conference.

[8] Albers, Patrick and Camp, Olivier. Security in Ad hoc
Networks: a general Intrusion detection architecture
enhancing trust based approaches. Proceedings of the First
International Workshop on Wireless Information Systems
2002.

[9] Sun, Bo, Wu, Kui and Pooch, Udo. Alert aggregation in
mobile ad hoc networks. Proceedings of the 2003 ACM
workshop on Wireless security, pp.69 – 78, 2003.

[10] Puttini, R; Percher, JM; Me, L, Camp, O; de Sousa, R. A
Modular Architecture for a Distributed IDS for Mobile Ad
Hoc Networks. Lecture Notes on Computer Science vol.
2669, Springer-Verlag, pp. 91-113, 2003.

[11] Ngai, Edith C. H., and Lyu, M. R.. Trust- and
Clustering-Based Authentication Services in Mobile Ad Hoc
Networks. 24th International Conference on Distributed
Computing Systems Workshops, vol. 04, pp. 582-587, 2004.

[12] Parker, J., Undercoffer, J. L., Pinkston, J., and Joshi, A.
On Intrusion Detection in Mobile Ad Hoc Networks. In 23rd
IEEE International Performance Computing and
Communications Conference – Workshop on Information
Assurance. IEEE, April 2004.

[13] S. Marti, T.J. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking (Mobicom ’00), pp. 275-
283, 2000.

[14] Graphs: Theory and Algorithms, K. Thulasiraman,
M.N.S. Swamy

[15] Karygiannis, A. and Antonakakis, E. mLab: A Mobile
Ad Hoc Network Test Bed. 1st Workshop on Security,
Privacy and Trust in Pervasive and Ubiquitous Computing in
conjunction with the IEEE International Conference in
Pervasive Services 2005, July 14, 2005.

[16] Andresen R.: Monitoring Linux with native tools. 30th
Annual International Conference of the Computer
Measurement Group, Inc. December 5-10, 2004.

